The Genetic Code
Index to this page |
One codon, AUG serves two related functions:
- it signals the start of translation
- it codes for the incorporation of the amino acid methionine (Met) into the growing polypeptide chain
Note that for each table, the left-hand column gives the first nucleotide of the codon, the 4 middle columns give the second nucleotide, and the last column gives the third nucleotide.
The RNA Codons
U | C | A | G | ||
---|---|---|---|---|---|
U | UUU Phenylalanine (Phe) | UCU Serine (Ser) | UAU Tyrosine (Tyr) | UGU Cysteine (Cys) | U |
UUC Phe | UCC Ser | UAC Tyr | UGC Cys | C | |
UUA Leucine (Leu) | UCA Ser | UAA STOP | UGA STOP | A | |
UUG Leu | UCG Ser | UAG STOP | UGG Tryptophan (Trp) | G | |
C | CUU Leucine (Leu) | CCU Proline (Pro) | CAU Histidine (His) | CGU Arginine (Arg) | U |
CUC Leu | CCC Pro | CAC His | CGC Arg | C | |
CUA Leu | CCA Pro | CAA Glutamine (Gln) | CGA Arg | A | |
CUG Leu | CCG Pro | CAG Gln | CGG Arg | G | |
A | AUU Isoleucine (Ile) | ACU Threonine (Thr) | AAU Asparagine (Asn) | AGU Serine (Ser) | U |
AUC Ile | ACC Thr | AAC Asn | AGC Ser | C | |
AUA Ile | ACA Thr | AAA Lysine (Lys) | AGA Arginine (Arg) | A | |
AUG Methionine (Met) or START | ACG Thr | AAG Lys | AGG Arg | G | |
G | GUU Valine Val | GCU Alanine (Ala) | GAU Aspartic acid (Asp) | GGU Glycine (Gly) | U |
GUC (Val) | GCC Ala | GAC Asp | GGC Gly | C | |
GUA Val | GCA Ala | GAA Glutamic acid (Glu) | GGA Gly | A | |
GUG Val | GCG Ala | GAG Glu | GGG Gly | G |
The DNA Codons
These are the codons as they are read on the sense (5' to 3') strand of DNA. Except that the nucleotide thymidine (T) is found in place of uridine (U), they read the same as RNA codons. However, mRNA is actually synthesized using theantisense strand of DNA (3' to 5') as the template. [Discussion]This table could well be called the Rosetta Stone of life.
The Genetic Code (DNA)
TTT | Phe | TCT | Ser | TAT | Tyr | TGT | Cys | |||
TTC | Phe | TCC | Ser | TAC | Tyr | TGC | Cys | |||
TTA | Leu | TCA | Ser | TAA | STOP | TGA | STOP | |||
TTG | Leu | TCG | Ser | TAG | STOP | TGG | Trp | |||
CTT | Leu | CCT | Pro | CAT | His | CGT | Arg | |||
CTC | Leu | CCC | Pro | CAC | His | CGC | Arg | |||
CTA | Leu | CCA | Pro | CAA | Gln | CGA | Arg | |||
CTG | Leu | CCG | Pro | CAG | Gln | CGG | Arg | |||
ATT | Ile | ACT | Thr | AAT | Asn | AGT | Ser | |||
ATC | Ile | ACC | Thr | AAC | Asn | AGC | Ser | |||
ATA | Ile | ACA | Thr | AAA | Lys | AGA | Arg | |||
ATG | Met* | ACG | Thr | AAG | Lys | AGG | Arg | |||
GTT | Val | GCT | Ala | GAT | Asp | GGT | Gly | |||
GTC | Val | GCC | Ala | GAC | Asp | GGC | Gly | |||
GTA | Val | GCA | Ala | GAA | Glu | GGA | Gly | |||
GTG | Val | GCG | Ala | GAG | Glu | GGG | Gly |
Codon Bias
All but two of the amino acids (Met and Trp) can be encoded by from 2 to 6 different codons. However, the genome of most organisms reveals that certain codons are preferred over others. In humans, for example, alanine is encoded by GCC four times as often as by GCG. This probably reflects a greater translation efficiency by the translation apparatus (e.g., ribosomes) for certain codons over their synonyms. [More]Exceptions to the Code
The genetic code is almost universal. The same codons are assigned to the same amino acids and to the same START and STOP signals in the vast majority of genes in animals, plants, and microorganisms. However, some exceptions have been found. Most of these involve assigning one or two of the three STOP codons to an amino acid instead.Mitochondrial genes
When mitochondrial mRNA from animals or microorganisms (but not from plants) is placed in a test tube with the cytosolic protein-synthesizing machinery (amino acids, enzymes, tRNAs, ribosomes) it fails to be translated into a protein.The reason: these mitochondria use UGA to encode tryptophan (Trp) rather than as a chain terminator. When translated by cytosolic machinery, synthesis stops where Trp should have been inserted.
In addition, most
- animal mitochondria use AUA for methionine not isoleucine and
- all vertebrate mitochondria use AGA and AGG as chain terminators.
- Yeast mitochondria assign all codons beginning with CU to threonine instead of leucine (which is still encoded by UUA and UUG as it is in cytosolic mRNA).
Link to discussion of mitochondrial genes. |
Nuclear genes
Violations of the universal code are far rarer for nuclear genes.A few unicellular eukaryotes have been found that use one or two (of their three) STOP codons for amino acids instead.
Nonstandard Amino Acids
The vast majority of proteins are assembled from the 20 amino acids listed above even though some of these may be chemically altered, e.g. by phosphorylation, at a later time.However, two cases have been found where an amino acid that is not one of the standard 20 is inserted by a tRNA into the growing polypeptide.
- selenocysteine. This amino acid is encoded by UGA. UGA is still used as a chain terminator, but the translation machinery is able to discriminate when a UGA codon should be used for selenocysteine rather than STOP. This codon usage has been found in certain Archaea, eubacteria, and animals (humans synthesize 25 different proteins containing selenium).
- pyrrolysine. In several species of Archaea and bacteria, this amino acid is encoded by UAG. How the translation machinery knows when it encounters UAG whether to insert a tRNA with pyrrolysine or to stop translation is not yet known.
Welcome&Next Search |
1 May 2014
No comments:
Post a Comment